RUS  ENG
Полная версия
ЖУРНАЛЫ // Journal of Algebra // Архив

J. Algebra, 2013, том 374, страницы 104–121 (Mi ja6)

Эта публикация цитируется в 18 статьях

Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models

N. O. Iltena, J. Lewisb, V. Przyjalkowskic

a Dept. of Mathematics, University of California, Berkeley, CA 94720, United States
b Fakultät für Mathematik, Universität Wien, Garnisongasse 3/14, A-1090 Wien, Austria
c Steklov Mathematical Institute, Gubkina st., 8, 119991, Moscow, Russia

Аннотация: We show that every Picard rank one smooth Fano threefold has a weak Landau–Ginzburg model coming from a toric degeneration. The fibers of these Landau–Ginzburg models can be compactified to K3 surfaces with Picard lattice of rank 19. We also show that any smooth Fano variety of arbitrary dimension which is a complete intersection of Cartier divisors in weighted projective space has a very weak Landau–Ginzburg model coming from a toric degeneration.

MSC: 14J33, 14J45, 14M25, 32G20, 14J28

Поступила в редакцию: 13.08.2011

Язык публикации: английский

DOI: 10.1016/j.jalgebra.2012.11.002



Реферативные базы данных:


© МИАН, 2024