RUS  ENG
Полная версия
ЖУРНАЛЫ // Journal of the American Mathematical Society // Архив

J. Am. Math. Soc., 2013, том 26, выпуск 4, страницы 1051–1083 (Mi jams2)

Эта публикация цитируется в 29 статьях

Homological mirror symmetry for punctured spheres

M. Abouzaida, D. Aurouxb, A. I. Efimovc, L. Katzarkovde, D. Orlovc

a Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
b Department of Mathematics, University of California, Berkeley, Berkeley, California 94720-3840
c Algebraic Geometry Section, Steklov Mathematical Institute, Russian Academy of Sciences, 8 Gubkin Street, Moscow 119991, Russia
d Department of Mathematics, Universität Wien, Garnisongasse 3, Vienna A-1090, Austria
e University of Miami, P.O. Box 249085, Coral Gables, Florida 33124-4250

Аннотация: We prove that the wrapped Fukaya category of a punctured sphere ($ S^{2}$ with an arbitrary number of points removed) is equivalent to the triangulated category of singularities of a mirror Landau-Ginzburg model, proving one side of the homological mirror symmetry conjecture in this case. By investigating fractional gradings on these categories, we conclude that cyclic covers on the symplectic side are mirror to orbifold quotients of the Landau–Ginzburg model.

MSC: Primary 53D37, 14J33; Secondary 53D40, 53D12, 18E30, 14F05

Поступила в редакцию: 22.03.2011
Исправленный вариант: 02.03.2013

Язык публикации: английский

DOI: 10.1090/S0894-0347-2013-00770-5



Реферативные базы данных:


© МИАН, 2024