RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2001, том 74, выпуск 10, страницы 541–545 (Mi jetpl4251)

Эта публикация цитируется в 21 статьях

НЕЛИНЕЙНАЯ ДИНАМИКА

On the initial-boundary value problems for soliton equations

A. Degasperisab, S. V. Manakovc, P. M. Santiniba

a Istituto Nazionale di Fisica Nucleare
b Dipartimento di Fisica, University of Rome "La Sapienza"
c L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Аннотация: We present a novel approach to solve initial-boundary value problems on the segment and on the half line for soliton equations. Our method is illustrated by solving a prototype, and widely applicable, dispersive soliton equation: the celebrated nonlinear Schroedinger equation. It is well-known that the basic difficulty associated with boundaries is that some coefficients of the evolution equation of the ($x$-) scattering matrix $S(k,t)$ depend on unknown boundary data. In this paper we overcome this difficulty by expressing the unknown boundary data in terms of elements of the scattering matrix itself, so obtaining a nonlinear integro — differential evolution equation for $S(k,t)$. We also sketch an alternative approach, in the semiline case, based on a nonlinear equation for $S(k,t)$ which does not contain unknown boundary data; in this way, the «linearizable» boundary value problems correspond to the cases in which $S(k,t)$ can be found by solving a linear Riemann – Hilbert problem.

PACS: 02.60.Lj, 03.40.Kf

Поступила в редакцию: 31.10.2001

Язык публикации: английский


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2001, 74:10, 481–485

Реферативные базы данных:


© МИАН, 2024