RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2009, том 90, выпуск 11, страницы 803–807 (Mi jetpl598)

Эта публикация цитируется в 31 статьях

ПОЛЯ, ЧАСТИЦЫ, ЯДРА

Non-conformal limit of AGT relation from the 1-point torus conformal block

V. Albaabcd, A. A. Morozovea

a Institute for Theoretical and Experimental Physics
b Department of General and Applied Physics, Moscow Institute of Physics and Technology
c Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
d Landau Institute for Theoretical Physics RAS
e Physical Department, Moscow State University

Аннотация: Given a $4d$ $\mathcal N=2$ SYM theory, one can construct the Seiberg-Witten prepotentional, which involves a sum over instantons. Integrals over instanton moduli spaces require regularisation. For UV-finite theories the AGT conjecture favours particular, Nekrasov's way of regularization. It implies that Nekrasov's partition function equals conformal blocks in $2d$ theories with $W_{N_c}$ chiral algebra (virasoro algebra in our case). For $N_c=2$ and one adjoint multiplet it coincides with a torus 1-point Virasoro conformal block. We check the AGT relation between conformal dimension and adjoint multiplet's mass in this case and investigate the large mass limit of the conformal block, which corresponds to asymptotically free $4d$ $\mathcal N=2$ super symmetric Yang-Mills theory. Though technically more involved, the limit is the same as in the case of fundamental multiplets, and this provides one more non-trivial check of AGT conjecture.

PACS: 11.15.-q, 11.25.Hf

Поступила в редакцию: 03.11.2009

Язык публикации: английский


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2009, 90:11, 708–712

Реферативные базы данных:


© МИАН, 2024