Эта публикация цитируется в
22 статьях
ПОЛЯ, ЧАСТИЦЫ, ЯДРА
Universal description of the rotational-vibrational spectrum of three particles with zero-range interactions
O. I. Kartavtsev,
A. V. Malykh Joint Institute for Nuclear Research
Аннотация:
A comprehensive universal description of the rotational-vibrational spectrum for two identical particles of mass
$m$ and the third particle of mass
$m_1$ in the zero-range limit of the interaction between different particles is given for arbitrary values of the mass ratio
$m/m_1$ and the total angular momentum
$L$. It is found that the number of vibrational states is determined by the functions
$L_c(m/m_1)$ and
$L_b(m/m_1)$. Explicitly, if the two-body scattering length is positive, the number of states is finite for
$L_c(m/m_1)\le L\le L_b(m/m_1)$, zero for
$L > L_b(m/m_1)$, and infinite for
$L < L_c(m/m_1)$. If the two-body scattering length is negative, the number of states is zero for
$L\ge L_c(m/m_1)$ and infinite for
$L < L_c(m/m_1)$. For the finite number of vibrational states, all the binding energies are described by the universal function
$\varepsilon_{L N}(m/m_1)=\mathcal E(\xi,\eta)$, where
$\xi={(N-1/2)}/{\sqrt{L(L+1)}}$,
$\eta=\sqrt{m/{m_1 L (L+1)}}$, and
$N$ is the vibrational quantum number. This scaling dependence is in agreement with the numerical calculations for
$L > 2$ and only slightly deviates from those for
$L=1, 2$. The universal description implies that the critical values
$L_c(m/m_1)$ and
$L_b(m/m_1)$ increase as
$0.401\sqrt{m/m_1}$ and
$0.563\sqrt{m/m_1}$, respectively, while the number of vibrational states for
$L\ge L_c(m/m_1)$ is within the range
$N\le N_{\max}\approx1.1\sqrt{L(L+1)}+1/2$.
PACS:
03.65.Ge,
03.75.Ss, 21.45.+v,
36.90.+f Поступила в редакцию: 26.09.2007
Язык публикации: английский