RUS  ENG
Полная версия
ЖУРНАЛЫ // Journal of Mathematical Analysis and Applications // Архив

J. Math. Anal. Appl., 2014, том 411, выпуск 1, страницы 261–270 (Mi jmaa4)

Эта публикация цитируется в 20 статьях

On solutions of Kolmogorov's equations for nonhomogeneous jump Markov processes

E. A. Feinberga, M. Mandavaa, A. N. Shiryaevb

a Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA 11794-3600
b Steklov Mathematical Institute, 8, Gubkina Str., Moscow, Russia 119991

Аннотация: This paper studies three ways to construct a nonhomogeneous jump Markov process: (i) via a compensator of the random measure of a multivariate point process, (ii) as a minimal solution of the backward Kolmogorov equation, and (iii) as a minimal solution of the forward Kolmogorov equation. The main conclusion of this paper is that, for a given measurable transition intensity, commonly called a Q-function, all these constructions define the same transition function. If this transition function is regular, that is, the probability of accumulation of jumps is zero, then this transition function is the unique solution of the backward and forward Kolmogorov equations. For continuous Q-functions, Kolmogorov equations were studied in Feller's seminal paper. In particular, this paper extends Feller's results for continuous Q-functions to measurable Q-functions and provides additional results.

Поступила в редакцию: 23.02.2013

Язык публикации: английский

DOI: 10.1016/j.jmaa.2013.09.043



Реферативные базы данных:


© МИАН, 2024