RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Матем. физ., анал., геом., 2004, том 11, номер 4, страницы 449–469 (Mi jmag220)

Эта публикация цитируется в 6 статьях

On entire functions having Taylor sections with only real zeros

Olga M. Katkovaa, Tatjana Lobova-Eisnerb, Anna M. Vishnyakovaa

a Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., 4, Kharkov, 61077, Ukraine
b Fakultät für Mathematik und Physik, Eberhard Karls Universität Tübingen, D8Q02, Auf der Morgenstelle 14, 72076, Tübingen

Аннотация: We investigate power series with positive coefficients having sections with only real zeros. For an entire function $f(z)=\sum_{k=0}^\infty a_kz^k$, $a_k>0$, we denote by $q_n(f):=\frac{a_{n-1}^2}{a_{n-2}a_n}$, $n\ge 2$. The following problem remains open: which entire function with positive coefficients and sections with only real zeros has the minimal possible $\liminf_{n\to \infty}q_n(f)$? We prove that the extremal function in the class of such entire functions with additional condition $\exists\,\lim_{n\to \infty}q_n(f)$ is the function of the form $f_a(z):=\sum_{k=0}^\infty\frac{z^k}{k!a^{k^2}}$. We answer also the following questions: for which $a$ do the function $f_a(z)$ and the function $y_a(z):=1+\sum_{k=1}^\infty\frac{z^k}{(a^k-1)(a^{k-1}-1)\dotsb(a-1)}$, $a>1$, have sections with only real zeros?

MSC: 30D15, 30C15, 26C10

Поступила в редакцию: 22.09.2004

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024