RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Матем. физ., анал., геом., 2003, том 10, номер 2, страницы 262–268 (Mi jmag249)

Краткие сообщения

On a relation between the coefficients and the sum of the generalized Taylor series

T. V. Rvachova

Department of Higher Mathematics, N.\,Ye.~Zhukovsky National Aeronautical University "KhAI", 17 Chkalova Str., Kharkiv, 61070, Ukraine

Аннотация: Let $f\in C^\infty [-1,1]$ and $\exists\,\rho\in [1,2)$ such that $\forall\,k=0,1,2,\dots$ $\|f^{(k)}\|_{C[-1,1]}\leq c(f)\rho^k2^{\frac{k(k+1)}2}$. Then it expands in the generalized Taylor series, which was introduced by V. A. Rvachov in 1982. In this paper it is shown that if the restrictions $\|f^{(n)}\|=o(2^{\frac{n(n+1)}2})$, $n\to\infty$ are imposed on the sum of this series, and stronger restrictions $|f^{(n)}(x_{n,k})|\leq CA(n)$, $\frac{A(n+1)}{A(n)}\leq 2^{n+\frac 12} $ hold for its coefficients, then these stronger restrictions will hold for the sum of the series too. As a consequence the conditions of belonging to Gevrey class and of real analyticity for the above-mentioned functions are obtained.

MSC: 41A58

Поступила в редакцию: 08.08.2001

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024