Аннотация:
Аксиома $l$-гиперплоскостей является обобщением аксиомы плоскостей Картана, и класс римановых многообразий, ей удовлетворяющих, является расширением класса пространственных форм. Для компактных многообразий с аксиомой $l$-гиперплоскостей при достаточно больших $l$ решена задача знакоопределенности эйлерова класса по знаку кривизны многообразия, при этом эйлеровы классы явно вычислены.
В предположении, что структура кривизны имеет общее положение, старшие классы Штифеля–Уитни многообразия с аксиомой гиперплоскостей нулевые. Если кривизна многообразия $M^{2m}$ с аксиомой $(2m -2)$-гиперплоскостей знаконеопределенная в каждой точке, то $M$ локально изометрично прямому произведению прямой на неплоскую пространственную форму.