RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2014, том 10, номер 1, страницы 64–125 (Mi jmag584)

Эта публикация цитируется в 3 статьях

On High Moments and the Spectral Norm of Large Dilute Wigner Random Matrices

O.  Khorunzhiy

Laboratoire de Mathématiques Université de Versailles-Saint-Quentin, 45, Avenue des Etats-Unis 78035 Versailles, France

Аннотация: We consider a dilute version of the Wigner ensemble of $n\times n$ random real symmetric matrices $H^{(n,\rho )}$, where $\rho$ denotes an average number of non-zero elements per row. We study the asymptotic properties of the spectral norm $\Vert H^{(n,\rho_n)}\Vert$ in the limit of infinite $n$ with $\rho_n = n^{2/3(1+\varepsilon)}$, $\varepsilon>0$. Our main result is that the probability $\mathbf{P}\left\{ \Vert H^{(n,\rho_n)} \Vert > 1+x n^{-2/3}\right\}$, $x>0$ is bounded for any $\varepsilon \in (\varepsilon_0, 1/2]$, $\varepsilon_0>0$ by an expression that does not depend on the particular values of the first several moments $V_{2l}, 2\le l\le 6$ and $V_{12+2\mathbf{P}hi_0}$, $\phi_0=\phi(\varepsilon_0)$ of the matrix elements of $H^{(n,\rho)}$ provided they exist and the probability distribution of the matrix elements is symmetric. The proof is based on the study of the upper bound of the averaged moments of random matrices with truncated random variables $ \mathbf{E}\{ \mathrm{Tr} (\hat H^{(n,\rho_n)})^{2s_n}\}$, $s_n = \lfloor \chi n^{2/3}\rfloor$ with $\chi>0$, in the limit $n\to\infty$.
We also consider the lower bound of $\mathbf{E}\{ \mathrm{Tr} ( H^{(n,\rho_n)})^{2s_n}\}$ and show that in the complementary asymptotic regime, when $\rho_n = n^\epsilon$ with $ \epsilon\in(0, 2/3]$ and $n\to\infty$, the fourth moment $V_4$ enters the estimates from below and the scaling variable $n^{-2/3}$ at the border of the limiting spectrum is to be replaced by a variable related with $\rho_n^{-1}$.

Ключевые слова и фразы: random matrices, Wigner ensemble, dilute random matrices, spectral norm.

MSC: 15B52

Поступила в редакцию: 08.08.2011
Исправленный вариант: 17.07.2013

Язык публикации: английский

DOI: 10.15407/mag10.01.064



Реферативные базы данных:


© МИАН, 2024