RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2018, том 14, номер 1, страницы 27–53 (Mi jmag687)

Эта публикация цитируется в 6 статьях

Renormalized solutions for nonlinear parabolic systems in the Lebesgue–Sobolev spaces with variable exponents

B. El Hamdaoui, J. Bennouna, A. Aberqi

Université Sidi Mohammed Ben Abdellah, Morocco

Аннотация: The existence result of renormalized solutions for a class of nonlinear parabolic systems with variable exponents of the type
\begin{align*} \partial_{t} e^{\lambda u_i(x,t)}& -\mathop{\mathrm{div}} (|u_i(x,t)|^{p(x)-2}u_i(x,t))\\ & + \mathop{\mathrm{div}}(c(x,t)|u_i(x,t)|^{\gamma(x)-2}u_i(x,t))=f_{i}(x,u_{1},u_{2})-\mathop{\mathrm{div}}(F_{i}), \end{align*}
for $i=1,2,$ is given. The nonlinearity structure changes from one point to other in the domain $\Omega$. The source term is less regular (bounded Radon measure) and no coercivity is in the nondivergent lower order term $\mathop{\mathrm{div}}(c(x,t)|u(x,t)|^{\gamma(x)-2}u(x,t))$. The main contribution of our work is the proof of the existence of renormalized solutions without the coercivity condition on nonlinearities which allows us to use the Gagliardo–Nirenberg theorem in the proof.

Ключевые слова и фразы: parabolic problems, Lebesgue–Sobolev space, variable exponent, renormalized solutions.

MSC: 35J70, 35D05

Поступила в редакцию: 10.01.2016
Исправленный вариант: 06.05.2016

Язык публикации: английский

DOI: 10.15407/mag14.01.027



© МИАН, 2024