RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2018, том 14, номер 3, страницы 270–285 (Mi jmag700)

Эта публикация цитируется в 4 статьях

Gap control by singular Schrödinger operators in a periodically structured metamaterial

Pavel Exnerab, Andrii Khrabustovskyic

a Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Hlavní 130, Řežnear Prague, 25068, Czech Republic
b Doppler Institute, Czech Technical University, Břehová 7, Prague, 11519, Czech Republic
c Institute of Applied Mathematics, Graz Institute of Technology, Steyrergasse 30, Graz, 8010, Austria

Аннотация: We consider a family $\{\mathcal{H}^\varepsilon\}_{\varepsilon>0}$ of $\varepsilon\mathbb{Z}^n$-periodic Schrödinger operators with $\delta'$-interactions supported on a lattice of closed compact surfaces; within a minimum period cell one has $m\in\mathbb{N}$ surfaces. We show that in the limit when $\varepsilon\to 0$ and the interactions strengths are appropriately scaled, $\mathcal{H}^\varepsilon$ has at most $m$ gaps within finite intervals, and moreover, the limiting behavior of the first $m$ gaps can be completely controlled through a suitable choice of those surfaces and of the interactions strengths.

Ключевые слова и фразы: periodic Schrödinger operators, $\delta'$ interaction, spectral gaps, eigenvalue asymptotics.

MSC: 35P05, 35P20, 35J10, 35B27

Поступила в редакцию: 21.02.2018

Язык публикации: английский

DOI: 10.15407/mag14.03.270



Реферативные базы данных:


© МИАН, 2024