RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2018, том 14, номер 3, страницы 336–361 (Mi jmag703)

The extended Leibniz rule and related equations in the space of rapidly decreasing functions

Hermann Königa, Vitali Milmanb

a Mathematisches Seminar, Universität Kiel, 24098 Kiel, Germany
b School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Аннотация: We solve the extended Leibniz rule $T(f\cdot g)=Tf \cdot Ag+Af\cdot Tg$ for operators $T$ and $A$ in the space of rapidly decreasing functions in both cases of complex and real-valued functions. We find that $Tf$ may be a linear combination of logarithmic derivatives of $f$ and its complex conjugate $\overline{f}$ with smooth coefficients up to some finite orders $m$ and $n$ respectively and $Af=f^{m}\cdot \overline{f}$ $^{n} $. In other cases $Tf$ and $Af$ may include separately the real and the imaginary part of $f$. In some way the equation yields a joint characterization of the derivative and the Fourier transform of $f$. We discuss conditions when $T$ is the derivative and $A$ is the identity. We also consider differentiable solutions of related functional equations reminiscent of those for the sine and cosine functions.

Ключевые слова и фразы: rapidly decreasing functions, extended Leibniz rule, Fourier transform.

MSC: 39B42, 47A62, 26A24

Поступила в редакцию: 08.02.2018

Язык публикации: английский

DOI: 10.15407/mag14.03.336



Реферативные базы данных:


© МИАН, 2024