Аннотация:
We solve the extended Leibniz rule $T(f\cdot g)=Tf \cdot Ag+Af\cdot Tg$ for operators $T$ and $A$ in the space of rapidly decreasing functions in both cases of complex and real-valued functions. We find that $Tf$ may be a linear combination of logarithmic derivatives of $f$ and its complex conjugate $\overline{f}$ with smooth coefficients up to some finite orders $m$ and $n$ respectively and $Af=f^{m}\cdot \overline{f}$$^{n} $. In other cases $Tf$ and $Af$ may include separately the real and the imaginary part of $f$. In some way the equation yields a joint characterization of the derivative and the Fourier transform of $f$. We discuss conditions when $T$ is the derivative and $A$ is the identity. We also consider differentiable solutions of related functional equations reminiscent of those for the sine and cosine functions.
Ключевые слова и фразы:rapidly decreasing functions, extended Leibniz rule, Fourier transform.