Аннотация:
We show that infinitely many Gorenstein weakly-exceptional quotient singularities exist in all dimensions, we prove a weak-exceptionality criterion for five-dimensional quotient singularities, and we find a sufficient condition for being weakly-exceptional for six-dimensional quotient singularities. The proof is naturally linked to various classical geometrical constructions related to subvarieties of small degree in projective spaces, in particular Bordiga surfaces and Bordiga threefolds.