Аннотация:
Представленная статья посвящена построению логических моделей различных версий теории случайных открытий (СО) и описанию вычислительных алгоритмов для логических высказываний. Предлагаемый нами подход основывается на многоагентной временной логике. Главный вопрос состоит в том, как можно было бы выразить самые существенные свойства СО в терминах временной логики, многоагентной логики с ветвящимся временем или линейной логики и вообще как определить СО с помощью формул языка логики. Нами в статье введено несколько формул на языке многоагентной временной логики, которые способны выразить существенные свойства СО. Используя некоторую модифицированную стандартную технику фильтрации, мы показали, что сконструированная таким образом логика имеет свойство финитной аппроксимируемости с эффективно вычислимой верхней границей. Это доказывает, что такая логика разрешима и нами предъявлен алгоритм разрешения. В заключительной части статьи мы рассматриваем интерпретацию СО посредством неопределённости и вероятности в расширении временной линейной логики и вычисление истинностных значений её формул.
Ключевые слова:временные логики, многоагентные логики, случайные открытия, ВО, модели Крипке–Хинтикка.