Аннотация:
В данной работе рассматриваются два варианта математической модели деформирования подкрепленных ортотропных оболочек при динамическом нагружении: в виде уравнений движения и в виде системы обыкновенных дифференциальных уравнений. Математические модели строятся на основе гипотез теории оболочек Кирхгофа–Лява, учитывают геометрическую нелинейность и ортотропию материала, а также возможность наличия подкрепления конструкции. Все соотношения моделей даются в общем виде и при указании соответствующих параметров Ляме могут быть использованы для широкого класса различных конструкций (пологих оболочек двоякой кривизны, цилиндрических, конических, сферических и тороидальных оболочек и их панелей и др.). Важной особенностью предложенной модели является возможность введения ребер жесткости как дискретно, так и по методу конструктивной анизотропии с учетом их сдвиговой и крутильной жесткости. Второй вариант математической модели выводится путем применения к функционалу полной энергии деформации оболочки метода Л. В. Канторовича (метод сведения трехмерного функционала к одномерному). Полученная начальная задача решается существенно проще, чем система уравнений движения в частных производных.
Ключевые слова:математическая модель, оболочки, динамическое нагружение, ортотропия, геометрическая нелинейность, уравнения движения, метод конструктивной анизотропии.