RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Сибирского федерального университета. Серия «Математика и физика» // Архив

Журн. СФУ. Сер. Матем. и физ., 2018, том 11, выпуск 3, страницы 383–396 (Mi jsfu670)

Эта публикация цитируется в 16 статьях

Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$

[Построение интерполяционных сплайнов, минимизирующих полунорму в пространстве $K_2(P_m)$]

Abdullo R. Hayotov

V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, M. Ulugbek street, 81, Tashkent, 100125, Uzbekistan

Аннотация: В настоящей статье, используя метод С.Л. Соболева, построены интерполяционные сплайны, минимизирующие выражения $\int_0^1(\varphi^{(m)}(x)+\omega^2\varphi^{(m-2)}(x))^2dx$ в пространстве $K_2(P_m)$. Получены явные формулы для коэффициентов интерполяционных сплайнов. Построенные интерполяционные формулы точны для одночленов $1,x,x^2,\dots, x^{m-3}$ и тригонометрических функций $\sin\omega x$ и $\cos\omega x$.

Ключевые слова: интерполяционный сплайн, гильбертово пространство, свойство минимизации нормы, метод Соболева, функции дискретного аргумента.

УДК: 519.652

Получена: 07.10.2017
Исправленный вариант: 10.12.2017
Принята: 22.03.2018

Язык публикации: английский

DOI: 10.17516/1997-1397-2018-11-3-383-396



Реферативные базы данных:


© МИАН, 2024