RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды семинара по краевым задачам // Архив

Тр. сем. по краев. задачам, 1980, выпуск 17, страницы 44–55 (Mi kukz242)

Исследование вопросов корректности внешних смешанных обратных краевых задач

А. М. Елизаров


Аннотация: В статье рассматривается новый класс внешних смешанных обратных краевых задач теории аналитических функций, в граничных условиях которых фигурируют только действительная и мнимая части искомой функции, причем одно краевое условие задано в зависимости от полярного угла единичного круга (т.е. в форме Демченко), а другое – в зависимости от параметра $\alpha=\arg z$.
Теорема существования решений доказана с использованием метода полигональной аппроксимации В. Н. Монахова, а теорема единственности – путем получения краевой задачи Римана для разносш двух функций, определяющих решения, и доказательства, что она имеет лишь тривиальное решение.
При определенных ограничениях на начальные данные доказана устойчивость решения в смысле введенного определения.
Библ. 10.

УДК: 517.544



Реферативные базы данных:


© МИАН, 2024