Аннотация:
В работе исследуется устойчивость решений начально-краевой задачи для линейной гибридной системы дифференциальных уравнений, моделирующей поворот твердого тела с двумя упругими стержнями, расположенными в одной плоскости. К оси вращения, проходящей через центр масс твердого тела перпендикулярно плоскости расположения стержней, приложен стабилизирующий момент, пропорциональный углу поворота, скорости от угла поворота и интегралу от угла поворота тела, обеспечивающий обратную связь. Для исследования поведения решений начально-краевой задачи предложена методика, позволяющая исключить из гибридной системы дифференциальных уравнений уравнения в частных производных, которые описывают динамику распределенных элементов механической системы. Это позволило построить одно интегродифференциальное уравнение для угла поворота. Его характеристическое уравнение отвечает за устойчивость решений всей системы. В пространстве коэффициентов обратных связей построены области, значения параметров из которых обеспечивают асимптотическую (но не экспоненциальную) устойчивость решений начально-краевой задачи.
Ключевые слова:устойчивость решений, дискретно-континуальные механические системы, гибридные системы дифференциальных уравнений.