Аннотация:
Движение объекта, характеризующегося обыкновенными дифференциальными уравнениями (ОДУ) с разрывными правыми частями вдоль поверхности разрыва, называют скользящим режимом. Требуется найти связь правой части уравнения скольжения с характеристиками системы (продолжить решение системы на поверхности разрыва). В статье предложено продолжение, базирующееся на решении задачи усредненной оптимизации. Показано, что для известных примеров решение задачи усредненной оптимизации приводит к результатам, совпадающим с методом А. Ф. Филиппова, и позволяет расширить эти методы на широкий класс многомерных задач. Изложены условия оптимальности усредненной задачи нелинейного программирования и примеры их использования для случаев обычного и вырожденного решения.