Аннотация:
В работе изучаются бифуркации периодических решений из состояния равновесия известного уравнения Мэкки–Гласса, предложенного в качестве математической модели изменения плотности белых клеток крови. Уравнение, записанное в безразмерных переменных, содержит малый параметр при производной, что делает его сингулярным. К уравнению применяется метод равномерной нормализации, позволяющий свести исследование поведения решений в окрестности состояния равновесия к анализу счетной системы обыкновенных дифференциальных уравнений, из которых выделяются уравнения «быстрой» и «медленных» переменных. Показано, что состояния равновесия уравнений «медленных» переменных определяют периодические решения. Анализ состояний равновесия позволяет изучить бифуркации периодических решений в зависимости от параметров уравнения и их устойчивость. Показана возможность одновременной бифуркации большого числа устойчивых периодических решений. Это явление носит название бифуркации мультистабильности.