RUS  ENG
Полная версия
ЖУРНАЛЫ // Моделирование и анализ информационных систем // Архив

Модел. и анализ информ. систем, 2017, том 24, номер 1, страницы 64–81 (Mi mais549)

Об асимптотике решений гармонического осциллятора с интегральным возмущением

П. Н. Нестеров

Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150003 Россия

Аннотация: В работе строятся асимптотические формулы для решений гармонического осциллятора с интегральным возмущением при стремлении независимой переменной к бесконечности. Особенностью рассматриваемого интегрального возмущения является колебательно убывающий характер его ядра. Предполагается, что интегральное ядро является вырожденным. Данное обстоятельство позволяет свести исходное интегро-дифференциальное уравнение к системе обыкновенных дифференциальных уравнений. При построении асимптотических формул для базисных решений полученной системы обыкновенных дифференциальных уравнений используется специальный метод асимптотического интегрирования линейных динамических систем с колебательно убывающими коэффициентами. В результате серии специальных преобразований система обыкновенных дифференциальных уравнений приводится к так называемому $L$-диагональному виду. Асимптотика фундаментальной матрицы $L$-диагональной системы может быть построена с помощью классической теоремы Н. Левинсона. Полученные асимптотические формулы позволяют выявить так называемые резонансные частоты, т.е. частоты колебательной составляющей ядра, при которых у исходного интегро-дифференциального уравнения имеются неограниченные решения. Как оказывается, эти частоты несколько отличаются от резонансных частот в адиабатическом осцилляторе с синусоидальной колебательной составляющей убывающего во времени возмущения.

Ключевые слова: асимптотика, интегро-дифференциальные уравнения типа Вольтерра, гармонический осциллятор, колебательно убывающие ядра, метод усреднения, теорема Левинсона.

УДК: 517.968.72

Поступила в редакцию: 10.11.2016

DOI: 10.18255/1818-1015-2017-1-64-81



Реферативные базы данных:


© МИАН, 2024