RUS  ENG
Полная версия
ЖУРНАЛЫ // Моделирование и анализ информационных систем // Архив

Модел. и анализ информ. систем, 2018, том 25, номер 6, страницы 667–679 (Mi mais655)

Анализ сигналов

Применение нейронных сетей для распознавания конструктивных элементов рельсов на магнитных и вихретоковых дефектограммах

Е. В. Кузьминa, О. Е. Горбуновb, П. О. Плотниковb, В. А. Тюкинb, В. А. Башкинa

a Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150003 Россия
b ООО «Центр инновационного программирования», NDDLab, ул. Союзная, 144, г. Ярославль, 150008 Россия

Аннотация: Для обеспечения безопасности движения на железнодорожном транспорте регулярно проводится неразрушающий контроль рельсов с применением различных подходов и методов, включая методы магнитной и вихретоковой дефектоскопии. Актуальной задачей является автоматический анализ больших массивов данных (дефектограмм), которые поступают от соответствующего оборудования. Под анализом понимается процесс определения по дефектограммам наличия дефектных участков наряду с выявлением конструктивных элементов рельсового пути. Данная статья посвящена задаче распознавания образов конструктивных элементов железнодорожных рельсов по дефектограммам многоканальных магнитных и вихретоковых дефектоскопов. Рассматриваются три класса конструктивных элементов рельсового пути: 1) болтовой стык с прямым или скошенным соединением рельсов, 2) электроконтактная сварка рельсов и 3) алюмотермитная сварка рельсов. Образы, которые не могут быть отнесены к этим трем классам, условно считаются дефектами и выносятся в отдельный четвертый класс. Для распознавания образов конструктивных элементов на дефектограммах применяется нейронная сеть, реализованная в рамках открытой библиотеки TensorFlow. С этой целью каждая выделенная для анализа область дефектограммы преобразуется в графический образ в градации серого цвета размером 20 на 39 пикселей.

Ключевые слова: неразрушающий контроль рельсов, магнитная и вихретоковая дефектоскопия, обнаружение дефектов, автоматический анализ дефектограмм, нейронные сети.

УДК: 004.032.26

Поступила в редакцию: 01.10.2018
Исправленный вариант: 23.11.2018
Принята в печать: 30.11.2018

DOI: 10.18255/1818-1015-667-679



© МИАН, 2024