Аннотация:
В работе представлены результаты исследования современных моделей текста с целью выявления на их основе семантической близости текстов на английском языке. Задача определения семантического сходства текстов является важной составляющей многих областей обработки естественного языка: машинного перевода, поиска информации, систем вопросов и ответов, искусственного интеллекта в образовании. Авторы решали задачу классификации близости ответов учащихся к эталонному ответу учителя. Для исследования были выбраны нейросетевые языковые модели BERT и GPT, ранее применявшиеся к определению семантического сходства текстов, новая нейросетевая модель Mamba, а так же стилометрические характеристики текста. Эксперименты проводились с двумя корпусами текстов: корпус Text Similarity из открытых источников и собственный корпус, собранный с помощью филологов. Качество решения задачи оценивалось точностью, полнотой и F-мерой. Все нейросетевые языковые модели показали близкое качество F-меры около 86% для большего по размеру корпуса Text Similarity и 50–56% для собственного корпуса авторов. Совсем новым результатом оказалось успешное применение модели mamba. Однако, самым интересным достижением стало применение векторов стилометрических характеристик текста, показавшее 80% F-меры для авторского корпуса и одинаковое с нейросетевыми моделями качество решения задачи для другого корпуса.
Ключевые слова:обработка естественного языка, сходство текстов, классификация текстов, нейросетевые языковые модели, оценка открытых ответов учащихся, искусственный интеллект в образовании.