RUS  ENG
Полная версия
ЖУРНАЛЫ // Моделирование и анализ информационных систем // Архив

Модел. и анализ информ. систем, 2025, том 32, номер 1, страницы 66–79 (Mi mais841)

Artificial intelligence

Сравнение предварительно обученных моделей для извлечения предметно-ориентированных сущностей из студенческих отчетных документов

А. В. Мельникова, М. С. Воробьева, А. В. Глазкова

Тюменский государственный университет, Тюмень, Россия

Аннотация: Авторы предлагают методику извлечения предметно-ориентированных сущностей (ПОС) из русскоязычных текстов студенческих отчетных документов с использованием предварительно обученных языковых моделей на основе трансформеров. Извлечение ПОС из студенческих работ представляет собой актуальную задачу, так как полученные данные могут использоваться для различных целей — начиная от формирования проектных групп и заканчивая персонализацией учебных маршрутов, а также автоматизация процесса обработки документов снижает затраты труда на ручную обработку. В качестве материала для дообучения исследуемых моделей использовались размеченные экспертами отчетные документы студентов, обучающихся по направлениям информационных технологий и поступивших в период с 2019 по 2022 год, по проектным, практическим дисциплинам и выпускным квалификационным работам. Задача извлечения ПОС рассматривается как две задачи: идентификация именованных сущностей и генерация размеченного текста. Сравнительный анализ проводился между моделями, основанными исключительно на энкодерах (ruBERT, ruRoBERTa), предназначенными для извлечения именованных сущностей, и моделями, использующими как энкодеры, так и декодеры (ruT5, mBART), а также моделями, базирующимися только на декодерах (ruGPT, T-lite), применяемыми для генерации текста. Для оценки эффективности сравниваемых моделей использовалась F-мера, а также проведен анализ типичных ошибок. Наиболее высокие показатели по F-мере на тестовом наборе данных продемонстрировала модель mBART (93.55%). Эта же модель показала наименьший уровень ошибок при идентификации ПОС во время генерации текста и разметки. Модели для извлечения именованных сущностей проявляют меньшую склонность к ошибкам, однако имеют тенденцию к фрагментарному выделению ПОС. Полученные результаты свидетельствуют о применимости рассматриваемых моделей для решения поставленных задач с учетом специфики предъявляемых требований.

Ключевые слова: предметно-ориентированные сущности, цифровой след, извлечение информации, обработка естественного языка, предварительно обученные языковые модели.

УДК: 004.912+378.1

MSC: 68T50, 97B40

Поступила в редакцию: 11.02.2025
Исправленный вариант: 21.02.2025
Принята в печать: 26.02.2025

DOI: 10.18255/1818-1015-2025-1-66-79



© МИАН, 2025