Аннотация:
Статья посвящена разработке методологии иерархического многозадачного обучения нейронных сетей, основанной на принципах архитектуры ERNIE 3, и экспериментальной апробации данной методологии на базе модели FRED-T5 для задач анализа и генерации текстов на русском языке. Иерархическое многозадачное обучение является перспективным подходом к созданию универсальных языковых моделей, способных эффективно решать разнообразные задачи обработки естественного языка (NLP). Предложенная методология объединяет преимущества специализированных энкодерных блоков для задач понимания текста (NLU) и общего декодера для генеративных задач (NLG), что позволяет повысить производительность модели и снизить вычислительные затраты. В работе проведён сравнительный анализ эффективности разработанной методологии на открытом бенчмарке Russian SuperGLUE с использованием предварительно обученной русскоязычной модели FRED-T5-1.7B. Экспериментальные результаты подтвердили существенное улучшение качества модели в режимах zero-shot и few-shot по сравнению с базовой конфигурацией. Дополнительно рассмотрены возможности практического применения разработанного подхода в решении реальных NLP-задач, а также даны рекомендации по дальнейшему развитию методологии и её интеграции в прикладные системы обработки русскоязычных текстов.