RUS  ENG
Полная версия
ЖУРНАЛЫ // Mathematics // Архив

Mathematics, 2023, том 11, выпуск 18, страницы 3851–15 (Mi math11)

Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems

S. M. Aseevab

a Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina St., 119991 Moscow, Russia
b Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia

Аннотация: The paper deals with an infinite-horizon optimal control problem with general asymptotic endpoint constraints. The fulfillment of constraints of this type can be viewed as the minimal necessary condition for the sustainability of solutions. A new version of the Pontryagin maximum principle with an explicitly specified adjoint variable is developed. The proof of the main results is based on the fact that the restriction of the optimal process to any finite time interval is a solution to the corresponding finite-horizon problem containing the conditional cost of the phase vector as a terminal term.

MSC: Primary 49K15; Secondary 91B62

Поступила в редакцию: 14.08.2023
Исправленный вариант: 05.09.2023
Принята в печать: 07.09.2023

Язык публикации: английский

DOI: 10.3390/math11183851



Реферативные базы данных:


© МИАН, 2024