Аннотация:
A new, less time-consuming and resource-intensive approach to predicting the EC50 ecotoxicity index, which is crucial for assessing the impact of compounds on ecosystems, is proposed. Efficient EC50 prediction based on infrared spectroscopy data and EC50 values from the EcoTOX database is achieved using machine learning. The best results with an F1-score of 0.83 were obtained with the SVC and XGBoost models.