RUS  ENG
Полная версия
ЖУРНАЛЫ // Mendeleev Communications // Архив

Mendeleev Commun., 2024, том 34, выпуск 6, страницы 786–787 (Mi mendc251)

Communications

Contrastive representation learning for spectroscopy data analysis

A. P. Vorozhtsov, P. V. Kitina

Department of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Moscow, Russian Federation


Аннотация: Metric-based representation learning showed good accuracy in identifying objects from one-dimensional spectroscopy data, robustness to small dataset size and the ability to change the data domain without fine-tuning.

Ключевые слова: spectroscopy, machine learning, representation learning, neural network, metric learning, spectra analysis.

Язык публикации: английский

DOI: 10.1016/j.mencom.2024.10.006



Реферативные базы данных:


© МИАН, 2025