Аннотация:
Исследуется динамика пузырька, находящегося в контакте с твердой поверхностью, под действием акустического поля при малых числах Рейнольдса. Предложен подход на основе метода граничных элементов (МГЭ) для течений Стокса, который особенно эффективен для численного решения задач в трехмерной постановке. Однако применение стандартного МГЭ при исследовании динамики пузырьков, содержащих сжимаемый газ, сталкивается с проблемой вырожденности алгебраической системы, для решения которой в работе используется дополнительное соотношение, основанное на принципе взаимности Лоренца. Динамика контактной линии описывается полуэмпирическим законом движения, который позволяет обойти известную проблему неинтегрируемости напряжений в движущейся тройной точке. Исследуется поведение пузырька, контактирующего с твердой поверхностью, с закрепленной или движущейся контактной линией. Разработанный метод может быть использован для детального изучения динамики пузырька при контакте с твердой стенкой с целью определения оптимальных технологических режимов и параметров очистки твердых поверхностей.
Ключевые слова:динамика пузырька, твердая поверхность, контактный угол, метод граничных элементов, течение Стокса.