Аннотация:
Предложена теория тонких конструктивно-ортотропных пластин, обладающих двухпериодической структурой, примером которых являются сотовые многослойные панели и подкрепленные пластины. Теория построена на основе уравнений общей трехмерной теории упругости путем с помощью асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения напряжений во всех конструктивных элементах пластины. Показано, что полученные глобальные (осредненные по определенным правилам) уравнения теории пластин близки к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием третьего порядка производных от продольных перемещений. Предложенный метод позволяет вычислить все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить локальные задачи до третьего приближения включительно. Приведен пример конечно-элементного решения локальных задач нулевого приближения для сотовой конструкции, который показал, что разработанный метод расчета пластин и его численная реализация достаточно эффективны, они позволяют проводить расчеты для сложных конструктивно-ортотропных пластин с сильно различающимися значениями упругих характеристик.