Аннотация:
В работе показано, что структурные уравнения, описывающие эволюцию кривой в $n$-мерном римановом пространстве постоянной кривизны, приводят к симплектическому, Гамильтонову и реккурсионному оператору. Это позволяет естественно связать конечномерную геометрию с бесконечномерной геометрией и теорией интегрируемых систем. Найдена пара Лакса в $\mathfrak o_{n+1}$ для векторного модифицированного уравнения Кортевега–де Фриза (vmKDV)
$$
u_t=u_{xxx}+\frac{3}{2}\|u\|^2 u_x
$$
Показано, как другие интегрируемые векторные эволюционные уравнения могут быть получены при использовании различных анзатцев для пар Лакса. Для получения этих результатов использовались естественные или параллельные базисы, которые с помощью обощенных преобразований Хасимото могут быть приведены к стандартному базису Френе. В случае нулевой кривизны, обычно используемой в контексте интегрируемых уравнений, натуральный базис является единственным, в котором не происходит потеря информации.