Аннотация:
Мы развиваем общую структурную теорию конечных тензорных категорий (возможно неполупростых), обобщая результаты в полупростом случае, недавно полученные в нашей совместной работе с Д. Никшичем. В частности, мы обобщаем на категорный случай теоремы о свободе для алгебр Хопфа и квазихопфовых алгебр, принадлежащие Николсу–Золлер и Шауенбургу соответственно. Мы также приводим категорные версии теории выделенных группоподобных элементов в конечномерных алгебрах Хопфа, результата Лоренца о вырожденности матрицы Картана и теоремы об отсутствии примитивных элементов в конечномерных алгебрах Хопфа над полями нулевой характеристики. Мы развиваем теорию модульных категорий и двойственных категорий для возможно неполупростых конечных тензорных категорий; в частности, мы вводим новое понятие точной модульной категории. Наконец, мы классифицируем неразложимые точные модульные категории над простейшими конечными тензорными категориями, такими как представления конечных групп в положительной характеристике, представления конечных супергрупп, представления алгебры Тафта.