RUS  ENG
Полная версия
ЖУРНАЛЫ // Moscow Mathematical Journal // Архив

Mosc. Math. J., 2013, том 13, номер 1, страницы 1–18 (Mi mmj486)

Эта публикация цитируется в 11 статьях

Post-Lie algebra structures and generalized derivations of semisimple Lie algebras

[Структуры пост-Ли алгебр и обобщенные дифференцирования полупростых алгебр Ли]

Dietrich Burdea, Karel Dekimpeb

a Fakultät für Mathematik, Universität Wien, Nordbergstr. 15, 1090 Wien, Austria
b Katholieke Universiteit Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium

Аннотация: Мы изучаем структуры пост-Ли алгебр на парах алгебр Ли $(\mathfrak g,\mathfrak n)$ и доказываем результаты о существовании для случая, когда одна из этих алгебр Ли полупроста. Для случая, когда $\mathfrak g$ полупроста, а $\mathfrak n$ разрешима, мы показываем, что структуры пост-Ли алгебры на паре $(\mathfrak g,\mathfrak n)$ нет. Для полупростых $\mathfrak n$ и некоторых разрешимых $\mathfrak g$ мы строим естественные структуры пост-Ли алгебр. С другой стороны, мы показываем, что структуры пост-алгебры Ли не существует, если $\mathfrak n$ полупроста, а $\mathfrak g$ разрешима и унимодулярна. Мы также находим обобщенные $(\alpha,\beta,\gamma)$-дифференцирования алгебры $\mathfrak n$ для полупростого случая. В качестве приложения мы классифицируем некоторые структуры пост-Ли алгебр, связанных с обобщенными дифференцированиями.

MSC: 17B30, 17D25

Статья поступила: 2 сентября 2011 г.; исправленный вариант 11 сентября 2012 г.

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024