Аннотация:
В недавней работе (arXiv:1109.1412) Бородин и Ольшанский дали новое доказательство известной теоремы Эдреи–Войкулеску, которая отождествляет границу графа Гельфанда–Цетлина с некоторой областью в бесконечномерном координатном пространстве. Этот граф кодирует ветвление неприводимых характеров конечномерных унитарных групп. Точки границы графа Гельфанда–Цетлина можно отождествить с конечными неразложимыми (= экстремальными) характерами бесконечномерной унитарной группы. Эквивалентно, эту границу можно рассматривать как множество двусторонне-бесконечных вполне неотрицательных последовательностей.
Основной составляющей доказательства Бородина–Ольшанского является новая явная детерминантная формула для числа полустандартных таблиц Юнга данной косой формы (или, что то же самое, схем Гельфанда–Цетлина трапециевидной формы). В данной работе предлагается более простое и прямое
доказательство этой формулы, использующее суммирование Бине–Коши и обратную матрицу Вандермонда. Также получено $q$-обобщение этой формулы, а именно, новая явная детерминантная формула для произвольных $q$-специализаций косых многочленов Шура. Некоторый частный случай последней формулы связан с $q$-графом Гельфанда–Цетлина и $q$-теплицевыми матрицами, введенными и изучавшимися Гориным (arXiv:1011.1769).