Аннотация:
Пусть $A_i$ – семейство абелевых многообразий фиксированной размерности, определенных над полем функций кривой над конечным полем. Предположим, что группы Шафаревича–Тейта для $A_i$ конечны. Зададимся тогда вопросом, верно ли, что произведение порядка группы Шафаревича–Тейта на регулятор ведет себя асимптотически так же, как экспоненциальная высота абелева многообразия. Мы приводим примеры семейств абелевых многообразий, для которых такой аналог теоремы Брауэра–Зигеля может быть установлен независимо от недоказанных гипотез, но приводим и указания на ситуации, в которых дело обстоит иначе. Мы доказываем также интересные неравенства, связывающие степень кондуктора, высоту и число компонент модели Нерона для абелева многообразия.