Аннотация:
Пусть $W$ – конечная группа Кокстера в евклидовом векторном пространстве $V$ и пусть $m$ – $W$-инвариантная $\mathbb Z_+$-значная функция на множестве отражений в $W$. Чалых и Веселов ввели интересную алгебру $Q_m$, называемую алгеброй $m$-квазиинвариантов для $W$, такую что $\mathbb C[V]_W\subseteq Q_m\subseteq\mathbb C[V]$, $Q_0=\mathbb C[V]$ и $Q_m\supseteq Q_{m'}$, если $m\leq m'$. Точнее говоря. $Q_m$ – алгебра квантовых интегралов рациональной системы Калоджеро–Мозера с константой спаривания $m$. Фейгин и Веселов предложили ряд интересных гипотез по поводу структуры алгебры $Q_m$ и проверили их для групп диэдра и постоянных функций $m$. Наша цель – доказать некоторые из этих гипотез в общем случае.