Эта публикация цитируется в
7 статьях
Riesz basis property of Hill operators with potentials in weighted spaces
P. Djakova,
B. Mityaginb a Sabanci University, Orhanli, Istanbul, Turkey
b Department of Mathematics, The Ohio State University
Аннотация:
Consider the Hill operator
$L(v)=-d^2/dx^2+v(x)$ on
$[0,\pi]$ with Dirichlet, periodic or antiperiodic
boundary conditions; then for large enough
$n$ close to
$n^2$ there are one Dirichlet eigenvalue
$\mu_n$ and
two periodic (if
$n$ is even) or antiperiodic (if
$n$ is odd) eigenvalues
$\lambda_n^-$,
$\lambda_n^+$
(counted with multiplicity).
We describe classes of complex potentials
$v(x)=\sum_{2\mathbb{Z}}V(k)e^{ikx}$
in weighted spaces (defined in terms of the Fourier coefficients of
$v$) such that the periodic (or antiperiodic) root function system of
$L(v)$ contains a Riesz basis if and only if
$$
V(-2n)\asymp V(2n) \text{ as } n\in2\mathbb{N}\ (\text{or } n\in1+2\mathbb{N}), \quad n\to\infty.
$$
For such potentials we prove that $\lambda_n^+-\lambda_n^-\sim\pm 2\sqrt{V(-2n)V(2n)}$ and
$$
\mu_n-\frac12(\lambda_n^++\lambda_n^-)\sim-\frac12(V(-2n)+V(2n)).
$$
References: 32 entries.
Ключевые слова и фразы:
Hill operator, periodic and antiperiodic boundary conditions, Riesz bases.
УДК:
517.9+517.43
MSC: 47E05,
34L40,
34L10 Поступила в редакцию: 15.03.2014
Язык публикации: английский