Эта публикация цитируется в
2 статьях
Positive entropy implies chaos along any infinite sequence
Wen Huanga,
Jian Lib,
Xiangdong Yea a School of Mathematical Sciences, University of Science and Technology of China
b Department of Mathematics, Shantou University
Аннотация:
Let
$G$ be an infinite countable discrete amenable group. For any
$G$-action on a compact metric space
$(X,\rho)$, it turns out that if the action has positive topological entropy, then for any sequence
$\{s_i\}_{i=1}^{+\infty}$ with pairwise distinct elements in
$G$ there exists a Cantor subset
$K$ of
$X$ which is Li–Yorke chaotic along this sequence, that is, for any two distinct points
$x,y\in K$, one has
$$
\limsup\limits_{i\to+\infty}\rho(s_i x,s_iy)>0,\ \text{and}\ \liminf_{i\to+\infty}\rho(s_ix,s_iy)=0.
$$
Ключевые слова и фразы:
Li–Yorke chaos, topological entropy, measure-theoretic entropy, amenable group action.
УДК:
517.987.5
MSC: 37B05,
37B40,
37A35 Поступила в редакцию: 14.06.2020
Исправленный вариант: 14.12.2020
Язык публикации: английский