RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические труды // Архив

Матем. тр., 2022, том 25, номер 1, страницы 134–151 (Mi mt663)

Эта публикация цитируется в 1 статье

Некоторые вопросы полиномиально вычислимых представлений для порождающих грамматик и форм Бэкуса – Наура

А. В. Нечёсов

Институт математики им. С.Л.Соболева СОРАН, просп. Академика Коптюга, 4, Новосибирск, 630090 РОССИЯ

Аннотация: В работе исследуется вопрос моделирования форм Бэкуса-Наура (BNF-систем), а также порождающих грамматик с помощью GNF-систем. GNF-системы являются базой для построения монотонных операторов таких, что наименьшие неподвижные точки этих операторов являются полиномиально вычислимыми. В данной работе результаты, полученные с помощью построения подходящих GNF-систем и применения к ним обобщенного полиномиального аналога теоремы Ганди о неподвижной точке, смогли дать ответы на вопросы существования полиномиально вычислимого представления для множества выводов в порождающих грамматиках. Более того, было показано, что если GNF-система моделирует BNF-систему, то множество прообразов в GNF-системе для множества представлений любого нетерминального символа в BNF-системе также является полиномиально вычислимым. Этот результат сразу позволяет перекодировать все определяемые конструкции в BNF-системе, в том числе синтаксис программ высокоуровневых языков программирования так, что они становятся распознаваемые за полиномиальное время.

Ключевые слова и фразы: GNF-системы, формы Бэкуса-Наура, BNF-системы, теорема Ганди, PAG-теорема, полиномиальная вычислимость, семантическое программирование, языки программирования, порождающие грамматики, грамматики Хомского, ИИ, умные контракты, блокчейн.

УДК: 510.56

Статья поступила: 22.02.2022
Переработанный вариант: 11.04.2022
Принята к публикации: 12.05.2022

DOI: 10.33048/mattrudy.2022.25.106



© МИАН, 2024