RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические вопросы криптографии // Архив

Матем. вопр. криптогр., 2017, том 8, выпуск 2, страницы 65–76 (Mi mvk224)

Эта публикация цитируется в 4 статьях

Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings

[Некоммутативная теорема Гамильтона–Кэли и корни характеристических многочленов скрученных линейных рекуррент над кольцами Галуа]

M. A. Goltvanitsa

Certification Research Center, LLC, Moscow

Аннотация: Пусть $p$ — простое число, $q=p^r$, $R=\mathrm{GR}(q^d, p^d)$ — кольцо Галуа, $S = \mathrm{GR}(q^{nd}, p^d)$ — его расширение. Рассматриваются скрученные линейные рекуррентные последoвательности максимального периода (ЛРП МП) над $S$. В работе доказано некоммутативное обобщение хорошо известной теоремы Гамильтона–Кэли. С использованием этого результата устанавливается существование корней характеристических многочленов скрученных ЛРП МП в некотором расширении $\mathcal{K}$ кольца $\check{S}$. Изучается структура множества корней этих многочленов.

Ключевые слова: некоммутативная теорема Гамильтона–Кэли, скрученные ЛРП, максимальный период, кольцо Галуа.

УДК: 519.719.2

Получено 17.III.2016

Язык публикации: английский

DOI: 10.4213/mvk224



Реферативные базы данных:


© МИАН, 2024