School of Mathematics and Statistics, Hainan Normal University,
Haikou, 571158 China
Аннотация:
Let
$(A,\mathscr{A},\mu)$
be a
$\sigma$-finite complete measure space, and let
$p(\cdot)$
be a
$\mu$-measurable function on
$A$
which takes values in
$(1,\infty)$.
Let
$Y$
be a
subspace of a Banach space
$X$.
By
$\widetilde{L}^{p(\cdot),\varphi}(A, Y)$
and
$\widetilde{L}^{p(\cdot),\varphi}(A, X)$
we denote the grand Bochner–Lebesgue spaces
with variable
exponent
$p(\cdot)$
whose functions take values in
$Y$
and
$X$,
respectively.
First, we
estimate the distance of
$f$
from
$\widetilde{L}^{p(\cdot),\varphi}(A, Y)$
when
$f\in
\widetilde{L}^{p(\cdot),\varphi}(A, X)$.
Then we prove that
$\widetilde{L}^{p(\cdot),\varphi}(A, Y)$
is proximinal in
$\widetilde{L}^{p(\cdot),\varphi}(A, X)$
if
$Y$
is weakly
$\mathcal{K}$-analytic and
proximinal in
$X$.
Finally, we establish a connection between the proximinality of
$\widetilde{L}^{p(\cdot),\varphi}(A, Y)$
in
$\widetilde{L}^{p(\cdot),\varphi}(A, X)$
and the proximinality of
$L^1(A, Y)$
in
$L^1(A, X)$.
Ключевые слова:proximinality, grand Bochner–Lebesgue space, variable exponent, best approximation,
weakly
$\mathcal{K}$-analytic.