RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2019, том 105, выпуск 3, страницы 351–358 (Mi mzm11809)

Статьи, опубликованные в английской версии журнала

An Internal Polya Inequality for $\mathbb{C}$-Convex Domains in $\mathbb{C}^{n}$

O. Günyüz, V. Zakharyuta

Sabanci University, Tuzla/Istanbul, 34956 Turkey

Аннотация: Let $K\subset \mathbb{C}$ be a polynomially convex compact set, $f$ be a function analytic in a domain $\overline{\mathbb{C}}\setminus K$ with Taylor expansion $f(z) =\sum_{k=0}^{\infty }a_{k}/z^{k+1} $ at $\infty $, and $H_{i}(f) :=\det (a_{k+l}) _{k,l=0}^{i}$ be the related Hankel determinants. The classical Polya theorem [11] says that
$$ \limsup_{i\to \infty }\vert H_{i}(f) \vert ^{1/i^{2}}\leq d(K) , $$
where $d(K) $ is the transfinite diameter of $K$. The main result of this paper is a multivariate analog of the Polya inequality for a weighted Hankel-type determinant constructed from the Taylor series of a function analytic on a $\mathbb{C}$-convex (= strictly linearly convex) domain in $\mathbb{C}^{n}$.

Ключевые слова: Polya inequality, transfinite diameter, $\mathbb{C}$-convexity.

Поступило: 27.09.2017
Исправленный вариант: 28.01.2018

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2019, 105:3, 351–358

Реферативные базы данных:


© МИАН, 2025