RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2018, том 104, выпуск 1, страницы 74–85 (Mi mzm12160)

Эта публикация цитируется в 8 статьях

Статьи, опубликованные в английской версии журнала

Stability Analysis of Distributed-Order Hilfer–Prabhakar Systems Based on Inertia Theory

M. Mashoof, A. H. Refahi Sheikhani, H. Saberi Najafi

Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University, Lahijan, 1616 Iran

Аннотация: The notion of a distributed-order Hilfer–Prabhakar derivative is introduced, which reduces in special cases to the existing notions of fractional or distributed-order derivatives. The stability of two classes of distributed-order Hilfer–Prabhakar differential equations, which are generalizations of all distributed or fractional differential equations considered previously, is analyzed. Sufficient conditions for the asymptotic stability of these systems are obtained by using properties of generalized Mittag-Leffler functions, the final-value theorem, and the Laplace transform. Stability conditions for such systems are introduced by using a new definition of the inertia of a matrix with respect to the distributed-order Hilfer–Prabhakar derivative.

Ключевые слова: inertia, distributed-order Hilfer–Prabhakar derivative, stability.

Поступило: 13.12.2016
Исправленный вариант: 11.12.2017

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2018, 104:1, 74–85

Реферативные базы данных:


© МИАН, 2024