RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2020, том 108, выпуск 2, страницы 219–228 (Mi mzm12591)

Статьи, опубликованные в английской версии журнала

Asymptotic Expansions at Nonsymmetric Cuspidal Points

I. Ly, N. Tarkhanov

Institute of Mathematics, Potsdam, 14476 Germany

Аннотация: We study the asymptotics of solutions to the Dirichlet problem in a domain $\mathcal{X} \subset \mathbb{R}^3$ whose boundary contains a singular point $O$. In a small neighborhood of this point, the domain has the form $\{ z > \sqrt{x^2 + y^4} \}$, i.e., the origin is a nonsymmetric conical point at the boundary. So far, the behavior of solutions to elliptic boundary-value problems has not been studied sufficiently in the case of nonsymmetric singular points. This problem was posed by V.A. Kondrat'ev in 2000. We establish a complete asymptotic expansion of solutions near the singular point.

Ключевые слова: Dirichlet problem, singular points, asymptotic expansions.

Поступило: 20.10.2019

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2020, 108:2, 219–228

Реферативные базы данных:


© МИАН, 2024