RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2020, том 107, выпуск 2, страницы 333–344 (Mi mzm12702)

Статьи, опубликованные в английской версии журнала

On the Well-Posedness of the Dissipative Kadomtsev–Petviashvili Equation

H. Wanga, A. Esfahanib

a School of Mathematics and Statistics, Anyang Normal University, Anyang, 455000 China
b School of Mathematics and Computer Science, Damghan University, Damghan, 36715-364 Iran

Аннотация: The well-posedness of the initial-value problem associated with the dissipative Kadomtsev–Petviashvili equation in the case of two-dimensional space is studied. It is proved by using a dyadic partition of unity in Fourier variables that the Cauchy problem associated with this equation is globally well posed in the anisotropic Sobolev space $H^{s,0}(\mathbb{R}^2)$ for all $s>-1/2$. It is also shown that this result is sharp in a certain sense.

Ключевые слова: dissipative Kadomtsev–Petviashvili equation, Bourgain spaces, Cauchy problem, Bourgain spaces, Strichartz estimates.

Поступило: 27.08.2018
Исправленный вариант: 03.07.2019

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2020, 107:2, 333–344

Реферативные базы данных:


© МИАН, 2024