RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 113, выпуск 4, страницы 574–583 (Mi mzm13403)

Эта публикация цитируется в 1 статье

Статьи, опубликованные в английской версии журнала

Green's Function and Existence Results for Solutions of Semipositone Nonlinear Euler–Bernoulli Beam Equations with Neumann Boundary Conditions

W. Jingjing, G. Chenghua, X. He

College of Mathematics and Statistics, Northwest Normal University

Аннотация: In this paper, we are concerned with the existence and multiplicity of positive solutions of the boundary value problem for the fourth-order semipositone nonlinear Euler–Bernoulli beam equation
$$ \begin{cases} y^{(4)}(x)+(\eta+\zeta)y''(x)+\eta\zeta y(x)=\lambda f(x,y(x)),& x\in[0,1],\\ y'(0)=y'(1)=y'''(0)=y'''(1)=0,& \end{cases} $$
where $\eta$ and $\zeta$ are constants, $\lambda>0$ is a parameter, and $f\in C([0,1]\times \mathbb{R}^+,\mathbb{R})$ is a function satisfying $f(x,y)\geq-\mathcal{X}$ for some positive constant $\mathcal{X}$; here $\mathbb{R}^+:=[0,\infty)$. The paper is concentrated on applications of the Green's function of the above problem to the derivation of the existence and multiplicity results for the positive solutions. One example is also given to demonstrate the results.

Ключевые слова: semipositone, Euler–Bernoulli beam equations, Green's function, positive solutions, Neumann boundary value problem.

MSC: 34B15; 34B18; 34B27

Поступило: 30.12.2021

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 113:4, 574–583

Реферативные базы данных:


© МИАН, 2024