RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2024, том 116, выпуск 4, страницы 717–728 (Mi mzm13927)

Статьи, опубликованные в английской версии журнала

Some solitons on homogeneous almost $\alpha$-cosymplectic $3$-manifolds and harmonic manifolds

N. A. Pundeera, P. Ghosha, H. M. Shahb, A. Bhattacharyyaa

a Department of Mathematics, Jadavpur University, Kolkata, West Bengal, India
b Harish-Chandra Research Institute, Homi Bhabha National Institute, Prayagraj, Uttar Pradesh, India

Аннотация: In this paper, we investigate the nature of Einstein solitons, whether it is steady, shrinking, or expanding on almost $\alpha$-cosymplectic $3$-manifolds. We also prove that a simply connected homogeneous almost $\alpha$-cosymplectic $3$-manifold admitting a contact Einstein soliton is an unimodular semidirect product Lie group. Finally, we show that a harmonic manifold admits a nontrivial Ricci soliton if and only if it is flat. Thus we show that rank one symmetric spaces of compact as well as noncompact type are stable under a Ricci soliton. In particular, we obtain a strengthening of Theorems 1 and 2 in [R. H. Bamler, “Stability of symmetric spaces of noncompact type under Ricci flow,” Geom. Funct. Anal. 25 (2), 342–416 (2015)].

Ключевые слова: almost $\alpha$-cosymplectic manifold, harmonic manifold, Ricci soliton, Einstein soliton.

MSC: 53B40, 58B20, 53C25, 53D15

Поступило: 17.02.2023
Исправленный вариант: 15.06.2024

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2024, 116:4, 717–728


© МИАН, 2025