RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 114, выпуск 4, страницы 553–572 (Mi mzm13953)

Статьи, опубликованные в английской версии журнала

Characterization of $B_{p(\cdot)}$ Weight and Some Maximal Characterizations of Anisotropic Weighted Hardy–Lorentz Spaces with Variable Exponent

H. Lia, X. Yub

a Zhejiang International Studies University
b Shangrao Normal University

Аннотация: In the present paper the variable exponent anisotropic weighted Hardy-Lorentz spaces is introduced. We prove a characterization of a modular inequality of the classical Hardy operator on the decreasing cone of the variable exponent Lebesgue spaces which leads to a criterion of the boundedness for the Hardy–Littlewood operator on the variable exponent weighted Lorentz spaces. Furthermore, we get some characterizations of the variable exponent anisotropic weighted Hardy-Lorentz spaces by maximal operators. Also the completeness of these spaces are investigated. Specifying the weights and exponents we recover the existing results as well as we obtain new results in the new and old settings.

Ключевые слова: Hardy operator, maximal operator, weighted Hardy–Lorentz space, weighted Lorentz space.

MSC: 46E30, 46B42

Поступило: 16.03.2023
Исправленный вариант: 06.06.2023

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 114:4, 553–572

Реферативные базы данных:


© МИАН, 2024