RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 114, выпуск 5, страницы 687–703 (Mi mzm14002)

Статьи, опубликованные в английской версии журнала

On the Homotopy Types of 2-Connected and 6-Dimensional CW-Complexes

M. Benkhalifa

Department of Mathematics, College of Sciences, University of Sharjah

Аннотация: Let $\mathbf{CW^6_2}/_{ \simeq}$ be the homotopy category of {2}-connected \rm{6}-dimensional CW-complexes $X$ such that $H_{3}(X)$ is uniquely 2-divisible; i.e., $H_{3}(X)\otimes \mathbb{Z}_2=0$ and $\operatorname{Tor} (H_{3}(X);\mathbb{Z}_2)=0$. In this paper, we define an "algebraic" category $\mathscr{D}$ whose objects are certain exact sequences, a functor $\mathcal{F}\colon \mathbf{CW^6_2}/_{ \simeq} \to\mathscr{D}$ such that $\mathcal{F}(X)$ is the Whitehead exact sequence of $X$, and we prove that $\mathcal{F}$ is a “detecting functor”, a notion introduced by Baues [1:x129], which implies that the homotopy types of objects in the category $\mathbf{CW^6_2}$ are in bijection with the isomorphic classes of objects of $\mathscr{D}$. Consequently, we show that two objects of $\mathbf{CW^6_2}$ are homotopic if and only if their Whitehead exact sequences are isomorphic in $\mathcal{D}$.

Ключевые слова: 2-connected 6-dimensional CW-complex, homotopy types, Whitehead's certain exact sequence, detecting functor.

MSC: 55P15

Поступило: 20.04.2023
Исправленный вариант: 11.07.2023

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 114:5, 687–703

Реферативные базы данных:


© МИАН, 2024